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Lesson 6

Put-Call Parity

Reading: Derivatives Markets 9.1–9.2

In this lesson and the next, rather than presenting a model for stocks or other assets so that we can price
options, we discuss general properties that are true regardless of model. In this lesson, we discuss the
relationship between the premium of a call and the premium of a put.

Suppose you bought a European call option and sold a European put option, both having the same
underlying asset, the same strike, and the same time to expiry. In this entire section, we will deal only with
European options, not American ones, so henceforth “European” should be understood. As above, let the
value of the underlying asset be St at time t. You would then pay C(K, T)−P(K, T) at time 0. Interestingly,
an equivalent result can be achieved without using options at all! Do you see how?

The point is that at time T, one of the two options is sure to be exercised, unless the price of the asset
at time T happens to exactly equal the strike price(ST � K), in which case both options are worthless.
Whichever option is exercised, you pay K and receive the underlying asset:

• If ST > K, you exercise the call option you bought. You pay K and receive the asset.

• If K > ST , the counterparty exercises the put option you sold. You receive the asset and pay K.

• If ST � K, it doesn’t matter whether you have K or the underlying asset.

Therefore, there are two ways to receive ST at time T:

1. Buy a call option and sell a put option at time 0, and pay K at time T.

2. Enter a forward agreement to buy ST , and at time T pay F0,T , the price of the forward agreement.

By the no-arbitrage principle, these two ways must cost the same. Discounting to time 0, this means

C(K, T) − P(K, T) + Ke−rT
� F0,T e−rT

or

C(K, T) − P(K, T) � e−rT(F0,T − K)
Put-Call Parity

(6.1)

Here’s another way to derive the equation. Suppose you would like to have the maximum of ST and
K at time T. What can you buy now that will result in having this maximum? There are two choices:

• You can buy a time-T forward on the asset, and buy a put option with expiry T and strike price K.
The forward price is F0,T , but since you pay at time 0, you pay e−rT F0,T for the forward.

• You can buy a risk-free investment maturing for K at time T, and buy a call option on the asset with
expiry T and strike price K. The cost of the risk-free investment is Ke−rT .

Both methods must have the same cost, so

e−rT F0,T + P(S, K, T) � Ke−rT
+ C(S, K, T)

which is the same as equation (6.1).
The Put-Call Parity equation lets you price a put once you know the price of a call.
Let’s go through specific examples.
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66 6. PUT-CALL PARITY

6.1 Stock put-call parity

For a nondividend paying stock, the forward price is F0,T � S0e rT . Equation (6.1) becomes

C(K, T) − P(K, T) � S0 − Ke−rT

The right hand side is the present value of the asset minus the present value of the strike.
Example 6A A nondividend paying stock has a price of 40. A European call option allows buying the
stock for 45 at the end of 9 months. The continuously compounded risk-free rate is 5%. The premium of
the call option is 2.84.

Determine the premium of a European put option allowing selling the stock for 45 at the end of 9
months.

Answer: Don’t forget that 5% is a continuously compounded rate.

C(K, T) − P(K, T) � S0 − Ke−rT

2.84 − P(K, T) � 40 − 45e−(0.05)(0.75)

2.84 − P(K, T) � 40 − 45(0.963194) � −3.34375

P(K, T) � 2.84 + 3.34375 � 6.18375 �

A convenient way to express put-call parity is with prepaid forwards. Using prepaid forwards, the
put-call parity formula becomes

C(K, T) − P(K, T) � FP
0,T − Ke−rT (6.2)

Using this, let’s discuss a dividend paying stock. If a stock pays discrete dividends, the formula
becomes

C(K, T) − P(K, T) � S0 − PV0,T(Divs) − Ke−rT (6.3)

Example 6B A stock’s price is 45. The stock will pay a dividend of 1 after 2 months. A European put
option with a strike of 42 and an expiry date of 3 months has a premium of 2.71. The continuously
compounded risk-free rate is 5%.

Determine the premium of a European call option on the stock with the same strike and expiry.

Answer: Using equation (6.3),

C(K, T) − P(K, T) � S0 − PV0,T(Divs) − Ke−rT

PV0,T(Divs), the present value of dividends, is the present value of the dividend of 1 discounted 2months
at 5%, or (1)e−0.05/6.

C(42, 0.25) − 2.71 � 45 − (1)e−0.05/6 − 42e−0.05(0.25)

� 45 − 0.991701 − 42(0.987578) � 2.5300

C(42, 0.25) � 2.71 + 2.5300 � 5.2400 �
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6.2. SYNTHETIC STOCKS AND TREASURIES 67

?
Quiz 6-1 A stock’s price is 50. The stock will pay a dividend of 2 after 4 months. A European call option
with a strike of 50 and an expiry date of 6 months has a premium of 1.62. The continuously compounded
risk-free rate is 4%.

Determine the premium of a European put option on the stock with the same strike and expiry.

Now let’s consider a stock with continuous dividends at rate δ. Using prepaid forwards, put-call
parity becomes

C(K, T) − P(K, T) � S0e−δT − Ke−rT (6.4)

Example 6C You are given:
(i) A stock’s price is 40.
(ii) The continuously compounded risk-free rate is 8%.
(iii) The stock’s continuous dividend rate is 2%.
A European 1-year call option with a strike of 50 costs 2.34.
Determine the premium for a European 1-year put option with a strike of 50.

Answer: Using equation (6.4),

C(K, T) − P(K, T) � S0e−δT − Ke−rT

2.34 − P(K, T) � 40e−0.02 − 50e−0.08

� 40(0.9801987) − 50(0.9231163) � −6.94787

P(K, T) � 2.34 + 6.94787 � 9.28787 �

?
Quiz 6-2 You are given:

(i) A stock’s price is 57.
(ii) The continuously compounded risk-free rate is 5%.
(iii) The stock’s continuous dividend rate is 3%.

A European 3-month put option with a strike of 55 costs 4.46.
Determine the premium of a European 3-month call option with a strike of 55.

6.2 Synthetic stocks and Treasuries

Since the put-call parity equation includes terms for stock (S0) and cash (K), we can create a synthetic
stock with an appropriate combination of options and lending. With continuous dividends, the formula
is

C(K, T) − P(K, T) � S0e−δT − Ke−rT

S0 �
(
C(K, T) − P(K, T) + Ke−rT )

eδT (6.5)

For example, suppose the risk-free rate is 5%. We want to create an investment equivalent to a stock
with continuous dividend rate of 2%. We can use any strike price and any expiry; let’s say 40 and 1 year.
We have

S0 �
(
C(40, 1) − P(40, 1) + 40e−0.05)e0.02
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68 6. PUT-CALL PARITY

So we buy e0.02 � 1.02020 call options and sell 1.02020 put options, and buy a Treasury for 38.8178. At the
end of a year, the Treasury will be worth 38.8178e0.05 � 40.808. An option will be exercised, so we will
pay 40(1.02020) � 40.808 and get 1.02020 shares of the stock, which is equivalent to buying 1 share of the
stock originally and reinvesting the dividends.

If dividends are discrete, then they are assumed to be fixed in advance, and the formula becomes

C(K, T) − P(K, T) � S0 − PV(dividends) − Ke−rT

S0 � C(K, T) − P(K, T) + PV(dividends) + Ke−rT︸                         ︷︷                         ︸
amount to lend

(6.6)

For example, suppose the risk-free rate is 5%, the stock is 40, and the period is 1 year. The dividends
are 0.5 apiece at the end of 3 months and at the end of 9 months. Then their present value is

0.5e−0.05(0.25)
+ 0.5e−0.05(0.75)

� 0.97539

To create a synthetic stock, we buy a call, sell a put, and lend 0.97539 + 40e−0.05 � 39.0246. At the end of
the year, we’ll have 40 plus the accumulated value of the dividends. One of the options will be exercised,
so the 40 will be exchanged for one share of the stock.

To create a synthetic Treasury1, we rearrange the equation as follows:

C(K, T) − P(K, T) � S0e−δT − Ke−rT

Ke−rT
� S0e−δT − C(K, T) + P(K, T) (6.7)

We buy e−δT shares of the stock and a put option and sell a call option. Using K � 40, r � 0.05, δ � 0.02,
and 1 year to maturity again, the total cost of this is Ke−rT � 40e−0.05 � 38.04918. At the end of the year,
we sell the stock for 40 (since one option will be exercised). This is equivalent to investing in a one-year
Treasury bill with maturity value 40.

If dividends are discrete, then they are assumed to be fixed in advance and can be combined with the
strike price as follows:

Ke−rT
+ PV(dividends) � S0 − C(K, T) + P(K, T) (6.8)

The maturity value of this Treasury is K + CumValue(dividends). For example, suppose the risk-free rate
is 5%, the stock is 40, and the period is 1 year. The dividends are 0.5 apiece at the end of 3 months and at
the end of 9 months. Then their present value, as calculated above, is

0.5e−0.05(0.25)
+ 0.5e−0.05(0.75)

� 0.97539

and their accumulated value at the end of the year is 0.97539e0.05 � 1.02540. Thus if you buy a stock and
a put and sell a call, both options with strike prices 40, the investment will be Ke−0.05 + 0.97539 � 39.0246
and the maturity value will be 40 + 1.02540 � 41.0254.

?
Quiz 6-3 You wish to create a synthetic investment using options on a stock. The continuously com-
pounded risk-free interest rate is 4%. The stock price is 43. You will use 6-month options with a strike
of 45. The stock pays continuous dividends at a rate of 1%. The synthetic investment should duplicate
100 shares of the stock.

Determine the amount you should invest in Treasuries.

1Creating a synthetic Treasury is called a conversion. Selling a synthetic Treasury by shorting the stock, buying a call, and selling
a put, is called a reverse conversion.
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6.3. SYNTHETIC OPTIONS 69

6.3 Synthetic options

If an option is mispriced based on put-call parity, you may want to create an arbitrage.
Suppose the price of a European call based on put-call parity is C, but the price it is actually selling at

is C′ < C. (From a different perspective, this may indicate the put is mispriced, but let’s assume the price
of the put is correct based on some model.) You would then buy the underpriced call option and sell a
synthesized call option. Since

C(S, K, t) � Se−δt − Ke−rt
+ P(S, K, t)

you would sell the right hand side of this equation. You’d sell e−δt shares of the underlying stock, sell a
European put option with strike price K and expiry t, and buy a risk-free zero-coupon bond with a price
of Ke−rt , or in other words lend Ke−rt at the risk-free rate. These transactions would give you C(S, K, t).
You’d pay C′ for the option you bought, and keep the difference.

6.4 Exchange options

The options we’ve discussed so far involve receiving/giving a stock in return for cash. We can generalize
to an option to receive a stock in return for a different stock. Let St be the value of the underlying asset,
the one for which the option is written, and Qt be the price of the strike asset, the one which is paid.
Forwards will now have a parameter for the asset; Ft ,T(Q) will mean a forward agreement to purchase
asset Q (actually, the asset with price Qt) at time T. A superscript P will indicate a prepaid forward, as
before. Calls and puts will have an extra parameter too:

• C(St ,Qt , T − t) means a call option written at time t which lets the purchaser elect to receive ST in
return for QT at time T; in other words, to receive max(0, ST −QT).

• P(St ,Qt , T − t) means a put option written at time t which lets the purchaser elect to give ST in
return for QT ; in other words, to receive max(0,QT − ST).

The put-call parity equation is then

C(St ,Qt , T − t) − P(St ,Qt , T − t) � FP
t ,T(S) − FP

t ,T(Q) (6.9)

Exchange options are sometimes given to corporate executives. They are given a call option on the
company’s stock against an index. If the company’s stock performs better than the index, they get
compensated.

Notice how the definitions of calls and puts are mirror images. A call on one share of Ford with one
share of General Motors as the strike asset is the same as a put on one share of General Motors with one
share of Ford as the strike asset. In other words

P(St ,Qt , T − t) � C(Qt , St , T − t)
and we could’ve written the above equation with just calls:

C(St ,Qt , T − t) − C(Qt , St , T − t) � FP
t ,T(S) − FP

t ,T(Q)
Example 6D A European call option allows one to purchase 2 shares of Stock B with 1 share of Stock A
at the end of a year. You are given:

(i) The continuously compounded risk-free rate is 5%.
(ii) Stock A pays dividends at a continuous rate of 2%.
(iii) Stock B pays dividends at a continuous rate of 4%.
(iv) The current price for Stock A is 70.
(v) The current price for Stock B is 30.
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70 6. PUT-CALL PARITY

A European put option which allows one to sell 2 shares of Stock B for 1 share of Stock A costs 11.50.
Determine the premium of the European call option mentioned above, which allows one to purchase

2 shares of Stock B for 1 share of Stock A.

Answer: The risk-free rate is irrelevant. Stock B is the underlying asset (price S in the above notation)
and Stock A is the strike asset (price Q in the above notation). By equation (6.9),

C(S,Q , 1) � 11.50 + FP
0,T(S) − FP

0,T(Q)
FP

0,T(S) � S0e−δST
� (2)(30)e−0.04

� 57.64737

FP
0,T(Q) � Q0e−δQT

� (70)e−0.02
� 68.61391

C(S,Q , 1) � 11.50 + 57.64737 − 68.61391 � 0.5335 �

?
Quiz 6-4 In the situation of Example 6D, determine the premium of a European call option which allows
one to buy 1 share of Stock A for 2 shares of Stock B at the end of a year.

6.5 Currency options

Let C(x0 , K, T) be a call option on currency with spot exchange rate2 x0 to purchase it at exchange rate
K at time T, and P(x0 , K, T) the corresponding put option. Putting equation 6.2 and the last formula in
Table 3.1 together, we have the following formula:

C(x0 , K, T) − P(x0 , K, T) � x0e−r f T − Ke−rdT (6.10)

where r f is the “foreign” risk-free rate for the currency which is playing the role of a stock (the one which
can be purchased for a call option or the one that can be sold for a put option) and rd is the “domestic”
risk-free rate which is playing the role of cash in a stock option (the one which the option owner pays in
a call option and the one which the option owner receives in a put option).
Example 6E You are given:

(i) The spot exchange rate for dollars to pounds is 1.4$/£.
(ii) The continuously compounded risk-free rate for dollars is 5%.
(iii) The continuously compounded risk-free rate for pounds is 8%.
A 9-month European put option allows selling £1 at the rate of $1.50/£. A 9-month dollar denominated

call option with the same strike costs $0.0223.
Determine the premium of the 9-month dollar denominated put option.

Answer: The prepaid forward price for pounds is

x0e−r f T
� 1.4e−0.08(0.75)

� 1.31847

The prepaid forward for the strike asset (dollars) is

Ke−rdT
� 1.5e−0.05(0.75)

� 1.44479

Thus

C(x0 , K, T) − P(x0 , K, T) � 1.31847 − 1.44479 � −0.12632
0.0223 − P(1.4, 1.5, 0.75) � −0.12632

P(1.4, 1.5, 0.75) � 0.0223 + 0.12632 � 0.14862 �
2The word “spot”, as in spot exchange rate or spot price or spot interest rate, refers to the current rates, in contrast to forward

rates.
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?
Quiz 6-5 You are given:

(i) The spot exchange rate for yen to dollars is 90¥/$.
(ii) The continuously compounded risk-free rate for dollars is 5%.
(iii) The continuously compounded risk-free rate for yen is 1%.
A 6-month yen-denominated European call option on dollars has a strike price of 92¥/$ and costs

¥0.75.
Calculate the premium of a 6-month yen-denominated European put option on dollars having a strike

price of 92¥/$.

A call to purchase pounds with dollars is equivalent to a put to sell dollars for pounds. However, the
units are different. Let’s see how to translate units.
Example 6F The spot exchange rate for dollars into euros is $1.05/e. A 6-month dollar denominated call
option to buy one euro at strike price $1.1/e1 costs $0.04.

Determine the premiumof the corresponding euro-denominated put option to sell one dollar for euros
at the corresponding strike price.

Answer: To sell 1 dollar, the corresponding exchange rate would be $1/e 1
1.1 , so the euro-denominated

strike price is 1
1.1 � 0.9091e/$. Since we’re in effect buying 0.9091 of the dollar-denominated call option,

the premium in dollars is ($0.04)(0.9091) � $0.03636. Dividing by the spot rate, the premium in euros is
0.03636

1.05 � e0.03463 �

Let’s generalize the example. Let the domestic currency be the one the option is denominated in,
the one in which the price is expressed. Let the foreign currency be the underlying asset of the option.
Consider a call option, with the following parameters:

1. The spot rate is x0 units of domestic currency.

2. The strike price is K units of domestic currency.
Then the call premium is C(x0 , K, T) units of domestic currency. The call option allows one to buy 1 unit
of foreign currency for K units of domestic currency. To identify the currency used to price an option,
we’ll use d for domestic and f for foreign. Our call premium is Cd(x0 , K, T).

Now let’s create an equivalent put option. This will allow one to sell K units of domestic currency
for 1 unit of foreign currency. But a single unit of a put option allows selling 1 unit, so one unit of the
equivalent put option must allow selling 1 unit of domestic currency for 1/K units of foreign currency.
Moreover, the spot price of domestic currency is 1/x0 in foreign currency. So we need KPd(1/x0 , 1/K, t)
in domestic currency to equate to Cd(x0 , K, T) in domestic currency.

KPd

(
1
x0
,

1
K
, T

)
� Cd(x0 , K, T)

Since the put option’s price should be expressed in the foreign currency, the left side must be multiplied
by x0, resulting in

Kx0P f

(
1
x0
,

1
K
, T

)
� Cd(x0 , K, T)

where P f is the price of the put option in the foreign currency.
Note that if settlement is through cash rather than through actual exchange of currencies, then the

put options Kx0P f (1/x0 , 1/K, T) may not have the same payoff as the call option Cd(x0 , K, T). The put
options Kx0P f (1/x0 , 1/K, T) pay off in the foreign currency while the call option Cd(x0 , K, T) pays off in
the domestic currency. The payoffs are equal based on exchange rate x0, but the exchange rate xT at time T
may be different from x0.
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?
Quiz 6-6 The spot rate for yen denominated in pounds sterling is 0.005£/¥. A 3-month pound-denomi-
nated put option has strike 0.0048£/¥ and costs £0.0002.

Determine the premium in yen for an equivalent 3-month yen-denominated call option with a strike
of ¥208 1

3 .

Exercises

Put-call parity for stock options

6.1. [CAS8-S03:18a] A four-month European call option with a strike price of 60 is selling for 5. The
price of the underlying stock is 61, and the annual continuously compounded risk-free rate is 12%. The
stock pays no dividends.

Calculate the value of a four-month European put option with a strike price of 60.

6.2. For a nondividend paying stock, you are given:

(i) Its current price is 30.
(ii) A European call option on the stock with one year to expiration and strike price 25 costs 8.05.
(iii) The continuously compounded risk-free interest rate is 0.05.

Determine the premium of a 1-year European put option on the stock with strike 25.

6.3. A nondividend paying stock has price 30. You are given:

(i) The continuously compounded risk-free interest rate is 5%.
(ii) A 6-month European call option on the stock costs 3.10.
(iii) A 6-month European put option on the stock with the same strike price as the call option costs

5.00.

Determine the strike price.

6.4. A stock pays continuous dividends proportional to its price at rate δ. You are given:

(i) The stock price is 40.
(ii) The continuously compounded risk-free interest rate is 4%.
(iii) A 3-month European call option on the stock with strike 40 costs 4.10.
(iv) A 3-month European put option on the stock with strike 40 costs 3.91.

Determine δ.

6.5. For a stock paying continuous dividends proportional to its price at rate δ � 0.02, you are given:

(i) The continuously compounded risk-free interest rate is 3%.
(ii) A 6-month European call option with strike 40 costs 4.10.
(iii) A 6-month European put option with strike 40 costs 3.20.

Determine the current price of the stock.
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6.6. A stock’s price is 45. Dividends of 2 are payable quarterly, with the next dividend payable at the
end of one month. You are given:

(i) The continuously compounded risk-free interest rate is 6%.
(ii) A 3-month European put option with strike 50 costs 7.32.

Determine the premium of a 3-month European call option on the stock with strike 50.

6.7. A dividend paying stock has price 50. You are given:

(i) The continuously compounded risk-free interest rate is 6%.
(ii) A 6-month European call option on the stock with strike 50 costs 2.30.
(iii) A 6-month European put option on the stock with strike 50 costs 1.30.

Determine the present value of dividends paid over the next 6 months on the stock.

6.8. Consider European options on a stock expiring at time t. Let P(K) be a put option with strike price
K, and C(K) be a call option with strike price K. You are given

(i) P(50) − C(55) � −2
(ii) P(55) − C(60) � 3
(iii) P(60) − C(50) � 14

Determine C(60) − P(50).
6.9. [CAS8-S00:26] You are given the following:

(i) Stock price = $50
(ii) The risk-free interest rate is a constant annual 8%, compounded continuously
(iii) The price of a 6-month European call option with an exercise price of $48 is $5.
(iv) The price of a 6-month European put option with an exercise price of $48 is $3.
(v) The stock pays no dividends

There is an arbitrage opportunity involving buying or selling one share of stock and buying or selling
puts and calls.

Calculate the profit after 6 months from this strategy.

6.10. [Introductory Derivatives Sample Question 2] You are given the following:

(i) The current price to buy one share of XYZ stock is 500.
(ii) The stock does not pay dividends.
(iii) The annual risk-free interest rate, compounded continuously, is 6%.
(iv) A European call option on one share of XYZ stock with a strike price of K that expires in one year

costs 66.59.
(v) A European put option on one share of XYZ stock with a strike price of K that expires in one year

costs 18.64.

Using put-call parity, calculate the strike price, K.

(A) 449 (B) 452 (C) 480 (D) 559 (E) 582
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6.11. [Introductory Derivatives Sample Question 5] The PS index has the following characteristics:

• One share of the PS index currently sells for 1,000.
• The PS index does not pay dividends.

Sam wants to lock in the ability to buy this index in one year for a price of 1,025. He can do this by
buying or selling European put and call options with a strike price of 1,025.

The annual effective risk-free interest rate is 5%.
Determine which of the following gives the hedging strategy that will achieve Sam’s objective and

also gives the cost today of establishing this position.
(A) Buy the put and sell the call, receive 23.81
(B) Buy the put and sell the call, spend 23.81
(C) Buy the put and sell the call, no cost
(D) Buy the call and sell the put, receive 23.81
(E) Buy the call and sell the put, spend 23.81

6.12. [Introductory Derivatives Sample Question 14] The current price of a non-dividend paying stock
is 40 and the continuously compounded annual risk-free rate of return is 8%. You are given that the price
of a 35-strike call option is 3.35 higher than the price of a 40-strike call option, where both options expire
in 3 months.

Calculate the amount by which the price of an otherwise equivalent 40-strike put option exceeds the
price of an otherwise equivalent 35-strike put option.

(A) 1.55 (B) 1.65 (C) 1.75 (D) 3.25 (E) 3.35

6.13. [IntroductoryDerivatives SampleQuestion 41] XYZ stock pays no dividends and its current price
is 100.

Assume the put, the call and the forward on XYZ stock are available and are priced so there are no
arbitrage opportunities. Also, assume there are no transaction costs.

The current risk-free annual effective interest rate is 1%.
Determine which of the following strategies currently has the highest net premium.

(A) Long a six-month 100-strike put and short a six-month 100-strike call
(B) Long a six-month forward on the stock
(C) Long a six-month 101-strike put and short a six-month 101-strike call
(D) Short a six-month forward on the stock
(E) Long a six-month 105-strike put and short a six-month 105-strike call

6.14. [Introductory Derivatives Sample Question 40] An investor is analyzing the costs of two-year,
European options for aluminum and zinc at a particular strike price.

For each ton of aluminum, the two-year forward price is 1400, a call option costs 700, and a put option
costs 550.

For each ton of zinc, the two-year forward price is 1600 and a put option costs 550.
The risk-free annual effective interest rate is a constant 6%.
Calculate the cost of a call option per ton of zinc.

(A) 522 (B) 800 (C) 878 (D) 900 (E) 1231
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6.15. [Introductory Derivatives Sample Question 53] For each ton of a certain type of rice commodity,
the four-year forward price is 300. A four-year 400-strike European call option costs 110.

The annual risk-free force of interest is a constant 6.5%.
Calculate the cost of a four-year 400-strike European put option for this rice commodity.

(A) 10.00 (B) 32.89 (C) 118.42 (D) 187.11 (E) 210.00

6.16. [Introductory Derivatives Sample Question 65] Assume that a single stock is the underlying asset
for a forward contract, a K-strike call option, and a K-strike put option.

Assume also that all three derivatives are evaluated at the same point in time.
Which of the following formulas represents put-call parity?

(A) Call Premium − Put Premium � Present Value(Forward Price − K)
(B) Call Premium − Put Premium � Present Value(Forward Price)
(C) Put Premium − Call Premium � 0
(D) Put Premium − Call Premium � Present Value(Forward Price − K)
(E) Put Premium − Call Premium � Present Value(Forward Price)

6.17. [Introductory Derivatives Sample Question 72] CornGrower is going to sell corn in one year. In
order to lock in a fixed selling price, CornGrower buys a put option and sells a call option on each bushel,
each with the same strike price and the same one-year expiration date. The current price of corn is 3.59
per bushel, and the net premium that CornGrower pays now to lock in the future price is 0.10 per bushel.

The continuously compounded risk-free interest rate is 4%.
Calculate the fixed selling price per bushel one year from now.

(A) 3.49 (B) 3.63 (C) 3.69 (D) 3.74 (E) 3.84

Synthetic assets

6.18. You are given:

(i) The price of a stock is 43.00.
(ii) The continuously compounded risk-free interest rate is 5%.
(iii) The stock pays a dividend of 1.00 three months from now.
(iv) A 3-month European call option on the stock with strike 44.00 costs 1.90.

You wish to create this stock synthetically, using a combination of 44-strike options expiring in 3
months and lending.

Determine the amount of money you should lend.

6.19. You are given:

(i) The price of a stock is 95.00.
(ii) The continuously compounded risk-free rate is 6%.
(iii) The stock pays quarterly dividends of 0.80, with the next dividend payable in 1 month.

You wish to create this stock synthetically, using 1-year European call and put options with strike
price K, and lending 96.35.

Determine the strike price of the options.
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6.20. You are given:

(i) A stock index is 22.00.
(ii) The continuous dividend rate of the index is 2%.
(iii) The continuously compounded risk-free interest rate is 5%.
(iv) A 90-day European call option on the index with strike 21.00 costs 1.90.
(v) A 90-day European put option on the index with strike 21.00 costs 0.75.

You wish to create an equivalent synthetic stock index using a combination of options and lending.
Determine the amount of money you should lend.

6.21. You are given:

(i) The stock price is 40.
(ii) The stock pays continuous dividends proportional to its price at a rate of 1%.
(iii) The continuously compounded risk-free interest rate is 4%.
(iv) A 182-day European put option on the stock with strike 50 costs 11.00.

You wish to create a synthetic 182-day Treasury bill with maturity value 10,000.
Determine the number of shares of the stock you should purchase.

6.22. You wish to create a synthetic 182-day Treasury bill with maturity value 10,000. You are given:

(i) The stock price is 40.
(ii) The stock pays continuous dividends proportional to its price at a rate of 2%.
(iii) A 182-day European put option on the stock with strike price K costs 0.80.
(iv) A 182-day European call option on the stock with strike price K costs 5.20.
(v) The continuously compounded risk-free interest rate is 5%.

Determine the number of shares of the stock you should purchase.

6.23. You are given:

(i) The price of a stock is 100.
(ii) The stock pays discrete dividends of 2 per quarter, with the first dividend 3 months from now.
(iii) The continuously compounded risk-free interest rate is 4%.

You wish to create a synthetic 182-day Treasury bill with maturity value 10,000, using a combination
of the stock and 6-month European put and call options on the stock with strike price 95.

Determine the number of shares of the stock you should purchase.

Put-call parity for exchange options

6.24. For two stocks, S1 and S2:

(i) The price of S1 is 30.
(ii) S1 pays continuous dividends proportional to its price. The dividend yield is 2%.
(iii) The price of S2 is 75.
(iv) S2 pays continuous dividends proportional to its price. The dividend yield is 5%.
(v) A 1-year call option to receive a share of S2 in exchange for 2.5 shares of S1 costs 2.50.

Determine the premium of a 1-year call option to receive 1 share of S1 in exchange for 0.4 shares of S2.
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6.25. S1 is a stock with price 30 and quarterly dividends of 0.25. The next dividend is payable in 3
months.

S2 is a nondividend paying stock with price 40.
The continuously compounded risk-free interest rate is 5%.
Let x be the premium of an option to give S1 in exchange for receiving S2 at the end of 6 months, and

let y be the premium of an option to give S2 in exchange for receiving S1 at the end of 6 months.
Determine x − y.

6.26. For the stocks of Sohitu Autos and Flashy Autos, you are given:

(i) The price of one share of Sohitu is 180.
(ii) The price of one share of Flashy is 90.
(iii) Sohitu pays quarterly dividends of 3 on Feb. 15, May 15, Aug. 15, and Nov. 15 of each year.
(iv) Flashy pays quarterly dividends of 1 on Jan. 31, Apr. 30, July 31, and Oct. 31 of each year.
(v) The continuously compounded risk-free interest rate is 0.06.
(vi) On Dec. 31, an option expiring in 6 months to get x shares of Flashy for 1 share of Sohitu costs

4.60.
(vii) On Dec. 31, an option expiring in 6 months to get 1 share of Sohitu for x shares of Flashy costs

7.04.

Determine x.

6.27. Stock A is a nondividend paying stock. Its price is 100.
Stock B pays continuous dividends proportional to its price. The dividend yield is 0.03. Its price is 60.
An option expiring in one year to buy x shares of A for 1 share of B costs 2.39.
An option expiring in one year to buy 1/x shares of B for 1 share of A costs 2.74.
Determine x.

Put-call parity for currency options

6.28. You are given

(i) The spot exchange rate is 95¥/$1.
(ii) The continuously compounded risk-free rate in yen is 1%.
(iii) The continuously compounded risk-free rate in dollars is 5%.
(iv) A 1-year dollar denominated European call option on yen with strike $0.01 costs $0.0011.

Determine the premium of a 1-year dollar denominated European put option on yen with strike $0.01.
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Use the following information for questions 6.29 and 6.30:

You are given:
(i) The spot exchange rate is 1.5$/£.
(ii) The continuously compounded risk-free rate in dollars is 6%.
(iii) The continuously compounded risk-free rate in pounds sterling is 3%.
(iv) A 6-month dollar-denominated European put option on pounds with a strike of 1.5$/£ costs

$0.03.

6.29. Determine the premium in pounds of a 6-month pound-denominated European call option on
dollars with a strike of (1/1.5)£/$.

6.30. Determine the premium in pounds of a 6-month pound-denominated European put option on
dollars with a strike of (1/1.5)£/$.

6.31. The spot exchange rate of dollars for euros is 1.2$/e. A dollar-denominated put option on euros
has strike price $1.3.

Determine the strike price of the corresponding euro-denominated call option to pay a certain number
of euros for one dollar.

6.32. You are given:

(i) The spot exchange rate of dollars for euros is 1.2$/e.
(ii) A one-year dollar-denominated European call option on euros with strike price $1.3 costs 0.05.
(iii) The continuously compounded risk-free interest rate for dollars is 5%.
(iv) A one-year dollar-denominated European put option on euros with strike price $1.3 costs 0.20.

Determine the continuously compounded risk-free interest rate for euros.

6.33. You are given:

(i) The spot exchange rate of yen for euros is 110¥/e.
(ii) The continuously compounded risk-free rate for yen is 2%.
(iii) The continuously compounded risk-free rate for euros is 4%.
(iv) A one year yen-denominated call on euros costs ¥3.
(v) A one year yen-denominated put on euros with the same strike price as the call costs ¥2.

Determine the strike price in yen.

6.34. You are given:

(i) The continuously compounded risk-free interest rate for dollars is 4%.
(ii) The continuously compounded risk-free interest rate for pounds is 6%.
(iii) A 1-year dollar-denominated European call option on pounds with strike price 1.6 costs $0.05.
(iv) A 1-year dollar-denominated European put option on pounds with strike price 1.6 costs $0.10.

Determine the spot exchange rate of dollars per pound.
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6.35. You are given:

(i) The continuously compounded risk-free interest rate for dollars is 4%.
(ii) The continuously compounded risk-free interest rate for pounds is 6%.
(iii) A 6-month dollar-denominated European call option on pounds with strike price 1.45 costs $0.05.
(iv) A 6-month dollar-denominated European put option on pounds with strike price 1.45 costs $0.02.

Determine the 6-month forward exchange rate of dollars per pound.
Additional released exam questions: Sample:1, CAS3-S07:3,4,13, SOA MFE-S07:1,
CAS3-F07:14,15,16,25, MFE/3F-S09:9

Solutions

6.1. By put-call parity,

P(61, 60, 1/3) � C(61, 60, 1/3) + 60e−r(1/3) − 61e−δ(1/3)

� 5 + 60e−0.04 − 61 � 1.647

6.2. We want P(25, 1). By put-call parity:

C(25, 1) − P(25, 1) � S − Ke−r

8.05 − P(25, 1) � 30 − 25e−0.05
� 6.2193

P(25, 1) � 8.05 − 6.2193 � 1.8307

6.3. We need K, the strike price. By put-call parity:

C(K, 0.5) − P(K, 0.5) � S − Ke−0.5r

3.10 − 5.00 � 30 − Ke−0.5(0.05)

−31.90 � −Ke−0.025

K � 31.90e0.025
� 32.7076

6.4. By put-call parity,

C(40, 0.25) − P(40, 0.25) � Se−0.25δ − Ke−0.25r

4.10 − 3.91 � 40e−0.25δ − 40e−0.01

� 40e−0.25δ − 39.6020
0.19 + 39.6020 � 40e−0.25δ

39.7920 � 40e−0.25δ

e−0.25δ
�

39.7920
40 � 0.9948

0.25δ � − ln 0.9948 � 0.005214

δ �
0.005214

0.25 � 0.02086
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6.5. By put-call parity,

C(40, 0.5) − P(40, 0.5) � Se−0.5δ − Ke−0.5r

4.10 − 3.20 � Se−0.01 − 40e−0.015

Se−0.01
� 0.9 + 39.40448 � 40.30448

S � 40.30448e0.01
� 40.7095

6.6. The value of the prepaid forward on the stock is

FP
0.25 � S − PV(Div) � 45 − 2e−0.06(1/12)

� 45 − 1.9900 � 43.0100

By put-call parity,

C(50, 0.25) − P(50, 0.25) � 43.0100 − Ke−0.25(0.06)

C(50, 0.25) − 7.32 � 43.0100 − 49.2556 � −6.2456

C(50, 0.25) � 7.32 − 6.2456 � 1.0744

6.7. By put-call parity,

C(50, 0.5) − P(50, 0.5) � S − PV(Divs) − Ke−r(0.5)

2.30 − 1.30 � 50 − PV(Divs) − 50e−0.03

PV(Divs) � 50 − 2.30 + 1.30 − 50(0.970446) � 0.4777

6.8. By put-call parity, adding up the three given statements

P(50) − C(50) + P(55) − C(55) + P(60) − C(60) � (50 + 55 + 60)e−rt − 3Se−δt
� −2 + 3 + 14 � 15

Then P(60)−C(60)+P(50)−C(50) � 110e−rt −2Se−δt � (2/3)(15) � 10. Since P(60)−C(50) � 14, it follows
that P(50) − C(60) � 10 − 14 � −4, and C(60) − P(50) � 4 .
6.9. First use put-call parity to determine whether the put is underpriced or overpriced relative to the

call.

P(50, 48, 0.5) � C(50, 48, 0.5) + 48e−rt − 50
� 5 + 48e−0.04 − 50 � 1.1179

Since the put has price 3, it is overpriced relative to the call. This means you buy a call and sell a put. In
6 months, you must buy a share of stock, so sell one short right now. The cash flow of this strategy is

Short one share of stock 50
Buy a call −5
Sell a put 3

48

After 6 months, 48 will grow to 48e0.04 � 49.96 and you will pay 48 for the stock, for a net gain of
49.959 − 48 � 1.959 .
6.10.

P − C � Ke−rt − Se−δt

18.64 − 66.59 � Ke−0.06 − 500

K � (500 + 18.64 − 66.59)e0.06
� 480.00
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6.11. By buying a 1,025-call and selling a 1,025-put, there will be a definite purchase of the index for
1,025 in one year. By put-call parity, the cost C − P is S − Ke−rt � 1000 − 1025/1.05 � 23.81 . (E)
6.12. By put-call parity, the excess of P(40)−C(40) over P(35)−C(35) is (40− 35)e−rt � 5e−0.02. Therefore

P(40) − P(35) � 5e−0.02
+ C(40) − C(35) � 4.90 − 3.35 � 1.55 (A)

6.13. By put-call parity, (A),(C), and (E) are equivalent to K/(1 + i)t − S with different Ks. The highest
premium is from the highest K. For K � 105, we get 105/1.010.5 − 100 > 0. Forwards have no premium.
(E)
6.14. The prepaid forward price is e−rt , here 1/1.062, times the forward price. By put-call parity for
aluminum,

700 − 550 �
1400
1.062 − Kv2

Kv2
� 1096.00

Then by put-call parity for zinc,

C − 550 �
1600
1.062 − 1096.00

C � 878.00 (C)

6.15. The four-year prepaid forward price is 300e−0.065(4) � 231.32. By put-call parity,

P − C � Ke−rt − FP(S)
P − 110 � 400e−0.26 − 231.32

P � 110 + 400e−0.26 − 231.32 � 187.11 (D)

6.16. (A) is the correct formula, since a call minus a put is equivalent to a forward on the underlying
asset, and if one will pay K at maturity, one should pay the present value of the excess of the forward
price over K right now.
6.17. CornGrower invested 3.69 (current price of corn plus price of options) and thus should receive
3.69(1.04) � 3.8406 at the end of the year if there is no arbitrage. (E)
6.18. By put-call parity,

C(S, 44, 0.25) − P(S, 44, 0.25) � S − PV(Divs) − Ke−0.05(0.25)

S � C(S, 44, 0.25) − P(S, 44, 0.25) + Ke−0.0125
+ PV(Divs)

� C(S, 44, 0.25) − P(S, 44, 0.25) + 44e−0.0125
+ e−0.0125

So the amount to lend is 45e−0.0125 � 44.4410 .
6.19. The present value of the dividends is 0.8(e−0.005 + e−0.02 + e−0.035 + e−0.05) � 3.1136. By formula (6.6),
the amount to lend is Ke−rT + PV(dividends), or

Ke−0.06
+ 3.1136 � 96.35

K � (96.35 − 3.1136)e0.06
� 99.00

We did not need the stock price for this exercise.

MFE Study Manual—10th edition 2nd printing
Copyright ©2017 ASM



82 6. PUT-CALL PARITY

6.20. Did you verify that these option prices satisfy put-call parity? Not that you have to for this exercise.
By put-call parity,

C(S, 21, 0.25) − P(S, 21, 0.25) � Se−(0.02)(0.25) − Ke−(0.05)(0.25)

S �
C(S, 21, 0.25) − P(S, 21, 0.25) + 21e−0.0125

e−0.005

�
(
C(S, 21, 0.25) − P(S, 21, 0.25))e0.005

+ 21e−0.0075

Thus we need to lend 21e−0.0075 � 20.84 . It can then be verified that buying e0.005 calls and selling e0.005

puts costs 1.16 for a total investment of 22, the price of the index.
6.21. By put-call parity,

P(S, 50, 0.5) − C(S, 50, 0.5) � Ke−0.04(0.5) − Se−0.01(0.5)

Ke−0.04(0.5)
� P(S, 50, 0.5) − C(S, 50, 0.5) + Se−0.005

Since we want a maturity value of 10,000, we need the left hand side to be 10, 000e−0.02, so we multiply
the equation by 10,000

K � 200. Thus we need to buy 200e−0.005 � 199.0025 shares of stock.
6.22. We will back out the strike price K using put-call parity.

P(S, K, 0.5) − C(S, K, 0.5) � Ke−0.05(0.5) − Se−0.02(0.5)

0.80 − 5.20 � Ke−0.025 − 40e−0.01

−4.40 � Ke−0.025 − 40e−0.01

K �
(
40e−0.01 − 4.40

)
e0.025

� 40e0.015 − 4.40e0.025

� 40.60452 − 4.51139 � 36.0931

By put-call parity (using the 3rd equation above)

Ke−0.025
� Se−0.01

+ P(S, K, 0.5) − C(S, K, 0.5)
We multiply by 10,000

K to get a maturity value of 10,000. The number of shares of stock needed is(
10,000

K

)
e−0.01

�
10,000
36.0931 (0.99005) � 274.30

6.23. Using equation (6.8), the maturity value of the Treasury for every share purchased is

K + CumValue(dividends) � 95 + 2e0.04(0.25)
+ 2 � 99.0201

Therefore, the number of shares of stock is 10,000/99.0201 � 100.99 .
6.24. By put-call parity,

C(S1 , 0.4S2 , 1) − C(0.4S2 , S1 , 1) � FP
0,1(S1) − FP

0,1(0.4S2)
A call for 0.4 shares of S2 in return for a share of S1 is 0.4 of the call in (v), so it is worth (0.4)(2.50) � 1.00.
Then

C(S1 , 0.4S2 , 1) − 1.00 � 30e−0.02 − (0.4)(75)e−0.05

� 29.40596 − 28.53688 � 0.86908

C(S1 , 0.4S2 , 1) � 0.86908 + 1.00 � 1.86908
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6.25. Let Divs be the dividends on S1. By put-call parity, x− y is the difference in prepaid forward prices
for the two stocks. x is a call on S2 and y is a put on S2, so

x − y � S2 −
(
S1 − PV(Divs))

Let’s compute the present value of dividends.

PV(Divs) � 0.25e−0.05(0.25)
+ 0.25e−0.05(0.5)

� 0.490722

So x − y is
x − y � 40 − (30 − 0.490722) � 10.490722

6.26. The present value of 6 months of dividends is 3(e−0.06(1/8) + e−0.06(3/8)) � 5.9108 for Sohitu and
e−0.005 + e−0.02 � 1.9752 for Flashy. By put-call parity

7.04 − 4.60 � 180 − 5.9108 − x(90 − 1.9752)
2.44 � 174.0892 − 88.0248x

x �
171.6492
88.0248 � 1.95

6.27. Consider the option to buy x shares of A for 1 share of B as the put in put-call parity. Then the
option to buy 1/x shares of B for 1 share of A is 1/x times an option to sell x shares of A for 1 share of B,
which would correspond to the call in put-call parity. So

2.39 − 2.74x � 100x − 60e−0.03

102.74x � 60.6176

x � 0.59

6.28. The spot exchange rate for yen in dollars is 1
95 $/¥. By put-call parity,

C(¥, $, 1) − P(¥, $, 1) � x0e−r¥ − Ke−r$

0.0011 − P(¥, $, 1) � 1
95 e−0.01 − 0.01e−0.05

� 0.0104216 − 0.0095123 � 0.0009093

P(¥, $, 1) � 0.0011 − 0.0009093 � $0.0001907

6.29. The dollar-denominated put option is equivalent to a pound-denominated call option on dollars
paying $1.5 per £1. To reduce this to one paying $1 per £(1/1.5), divide by 1.5, so the price in dollars is
0.02 and the price in pounds is £ 0.02

1.5 � £0.01333 .
6.30. We’ll use the answer to the previous exercise and put-call parity.

C($, £, 0.5) − P($, £, 0.5) � e−(0.06)(0.5)x0 − e−(0.03)(0.5)K

0.01333 − P($, £, 0.5) � 0.67e−0.03 − 0.67e−0.015

0.01333 − P($, £, 0.5) � −0.00983

P($, £, 0.5) � 0.01333 + 0.00983 � 0.02316
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6.31. The put option allows giving a euro and receiving $1.3. The call option allows receiving $1 and
giving euros. The number of euroswould have to be 1

1.3 � e0.7692 . The spot exchange rate isn’t relevant.
6.32. By put-call parity,

C(e, $, 1) − P(e, $, 1) � x0e−re − Ke−r$

0.05 − 0.20 � 1.2e−re − 1.3e−0.05

1.2e−re � −0.15 + 1.236598 � 1.086598

e−re �
1.086598

1.2 � 0.90550

re � − ln 0.90550 � 0.09927

6.33. By put-call parity,

C(e, ¥, 1) − P(e, ¥, 1) � x0e−re − Ke−r¥

¥3 − ¥2 � ¥110e−0.04 − Ke−0.02

¥1 � ¥110(0.960789) − K(0.980199)
K �

¥110(0.960789) − 1
0.980199 � ¥106.802

6.34. By put-call parity,

C(£, $, 1) − P(£, $, 1) � x0e−0.06 − Ke−0.04

0.05 − 0.10 � x0e−0.06 − 1.6e−0.04

x0e−0.06
� −0.05 + 1.6(0.960789) � 1.48726

x0 � 1.48726e0.06
� 1.48726(1.061837) � 1.57923

6.35. If x0 is the current (spot) exchange rate of dollars per pound, the prepaid forward exchange rate of
dollars per pound is x0e−r£t and the forward exchange rate is x0e(r$−r£)t , since you have to pay interest for
time t on the prepaid forward exchange rate. So we need x0e(0.04−0.06)(0.5) � x0e−0.01.

Using put-call parity,

C(£, $, 0.5) − P(£, $, 0.5) � x0e−0.03 − Ke−0.02

0.05 − 0.02 � x0e−0.03 − 1.45e−0.02

x0e−0.03
� 0.03 + 1.45(0.980199) � 1.45129

x0e−0.01
� 1.45129e0.02

� 1.4806

Quiz Solutions

6-1. Using equation (6.3),

C(K, T) − P(K, T) � S0 − PV0,T(Divs) − Ke−rT

1.62 − P(K, T) � 50 − 2e−0.04/3 − 50e−0.04(0.5)

� 50 − 2(0.9867552) − 50(0.9801987) � −0.9834

P(K, T) � 1.62 + 0.9834 � 2.6034
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6-2. Using equation (6.4),

C(K, T) − P(K, T) � S0e−δT − Ke−rT

C(K, T) − 4.46 � 57e−(0.03)(0.25) − 55e−(0.05)(0.25)

� 57(0.992528) − 55(0.987578) � 2.2573

C(K, T) � 4.46 + 2.2573 � 6.7173

6-3. The stock price is irrelevant.
We have

C(K, T) − P(K, T) � S0e−δT − Ke−rT

S0 � e0.01(0.5) (C(45, 0.5) − P(45, 0.5)) + 45e(−0.04+0.01)(0.5)

For one share of stock, the first summand indicates the puts to sell and calls to buy, and the second sum-
mand indicates the investment in Treasuries. Therefore, the amount to invest in Treasuries to synthesize
100 shares of stock is

100
(
45e(−0.04+0.01)(0.5)

)
� 4500e−0.015

� 4433 .

6-4. A trick question. The option to receive 1 share of Stock A for 2 shares of Stock B is the same as the
option to sell 2 shares of Stock B for 1 share of Stock A, the put option mentioned in the example, so the
premium for this call option is 11.50 .
6-5. The prepaid forward price for dollars is

x0e−r f T
� 90e−0.05(0.5)

� ¥87.7779

The prepaid forward price for the strike asset, yen, is

Ke−rdT
� 92e−0.01(0.5)

� ¥91.5411

By put-call parity,

P(90, 92, 0.5) − C(90, 92, 0.5) � 91.5411 − 87.7779 � 3.7632

P(90, 92, 0.5) � 0.75 + 3.7632 � 4.5132

6-6. We divide by Kx0 to obtain 0.0002
/ ((0.005)(0.0048)) � ¥8 1

3 .
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Practice Exam 1

1. Options on XYZ stock trade on the Newark Exchange. Each option is for 100 shares. You are given
that on March 21:

(i) 3000 options traded.
(ii) The price of a share of stock was $40.
(iii) The price of each option was $90.

Determine the total notional value of all of the options traded.

(A) 3,000 (B) 9,000 (C) 120,000 (D) 270,000 (E) 12,000,000

2. For American put options on a stockwith identical expiry dates, you are given the following prices:

Strike price Put premium
30 2.40
35 6.40

For an American put option on the same stock with the same expiry date and strike price 38, which of
the following statements is correct?
(A) The lowest possible price for the option is 8.80.
(B) The highest possible price for the option is 8.80.
(C) The lowest possible price for the option is 9.20.
(D) The highest possible price for the option is 9.20.
(E) The lowest possible price for the option is 9.40.

3. A company has 100 shares of ABC stock. The current price of ABC stock is 30. ABC stock pays no
dividends.

The company would like to guarantee its ability to sell the stock at the end of six months for at least 28.
European call options on the same stock expiring in 6 months with exercise price 28 are available for

4.10.
The continuously compounded risk-free interest rate is 5%.
Determine the cost of the hedge.

(A) 73 (B) 85 (C) 99 (D) 126 (E) 141
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4. You are given the following prices for a stock:

Time Price
Initial 39
After 1 month 39
After 2 months 37
After 3 months 43

A portfolio of 3-month Asian options, each based on monthly averages of the stock price, consists of
the following:

(i) 100 arithmetic average price call options, strike 36.
(ii) 200 geometric average strike call options.
(iii) 300 arithmetic average price put options, strike 41.

Determine the net payoff of the portfolio after 3 months.

(A) 1433 (B) 1449 (C) 1464 (D) 1500 (E) 1512

5. The price of a 6-month futures contract on widgets is 260.
A 6-month European call option on the futures contract with strike price 256 is priced using Black’s

formula.
You are given:

(i) The continuously compounded risk-free rate is 0.04.
(ii) The volatility of the futures contract is 0.25.

Determine the price of the option.

(A) 19.84 (B) 20.16 (C) 20.35 (D) 20.57 (E) 20.74

6. You are given the following binomial tree for continuously compounded interest rates:

0.08

0.06

0.04

0.10

0.06

0.02

Year 0 Year 1 Year 2

The probability of an up move is 0.5.
Calculate the continuously compounded interest rate on a default-free 3-year zero-coupon bond.

(A) 0.0593 (B) 0.0594 (C) 0.0596 (D) 0.0597 (E) 0.0598
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7. Investor A bought a 40-strike European call option expiring in 1 year on a stock for 5.50. Investor
A earned a profit of 6.44 at the end of the year.

Investor B bought a 45-strike European call option expiring in 1 year on the same stock at the same
time, and earned a profit of 3.22 at the end of the year.

The continuously compounded risk-free interest rate is 2%.
Determine the price of the 45-strike European call option.

(A) 3.67 (B) 3.71 (C) 3.75 (D) 3.78 (E) 3.82

8. For a delta-hedged portfolio, you are given

(i) The stock price is 40.
(ii) The stock’s volatility is 0.2.
(iii) The option’s gamma is 0.02.

Estimate the annual variance of the portfolio if it is rehedged every half-month.

(A) 0.001 (B) 0.017 (C) 0.027 (D) 0.034 (E) 0.054

9. You own 100 shares of a stock whose current price is 42. You would like to hedge your downside
exposure by buying 100 6-month European put options with a strike price of 40. You are given:

(i) The Black-Scholes framework is assumed.
(ii) The continuously compounded risk-free interest rate is 5%.
(iii) The stock pays no dividends.
(iv) The stock’s volatility is 22%.

Determine the cost of the put options.

(A) 121 (B) 123 (C) 125 (D) 127 (E) 129

10. You are given the following information for a European call option expiring at the end of three
years:

(i) The current price of the stock is 66.
(ii) The strike price of the option is 70.
(iii) The continuously compounded risk-free interest rate is 0.05.
(iv) The continuously compounded dividend rate of the stock is 0.02.

The option is priced using a 1-period binomial tree with u � 1.3, d � 0.7.
A replicating portfolio consists of shares of the underlying stock and a loan.
Determine the amount borrowed in the replicating portfolio.

(A) 14.94 (B) 15.87 (C) 17.36 (D) 17.53 (E) 18.43

11. You are given the following weekly stock prices for six consecutive weeks:

50.02 51.11 50.09 48.25 52.06 54.18

Estimatethe annual volatility of the stock.

(A) 0.11 (B) 0.12 (C) 0.29 (D) 0.33 (E) 0.34
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12. For European options on a stock having the same expiry and strike price, you are given:

(i) The stock price is 85.
(ii) The strike price is 90.
(iii) The continuously compounded risk free rate is 0.04.
(iv) The continuously compounded dividend rate on the stock is 0.02.
(v) A call option has premium 9.91.
(vi) A put option has premium 12.63.

Determine the time to expiry for the options.

(A) 3 months (B) 6 months (C) 9 months (D) 12 months (E) 15 months

13. A portfolio of European options on a stock consists of a bull spread of calls with strike prices 48
and 60 and a bear spread of puts with strike prices 48 and 60.

You are given:

(i) The options all expire in 1 year.
(ii) The current price of the stock is 50.
(iii) The stock pays dividends at a continuously compounded rate of 0.01.
(iv) The continuously compounded risk-free interest rate is 0.05.

Calculate the price of the portfolio.

(A) 9.51 (B) 9.61 (C) 9.90 (D) 11.41 (E) 11.53

14. Which of statements (A)–(D) is not a weakness of the lognormal model for stock prices?
(A) Volatility is constant.
(B) Large stock movements do not occur.
(C) Projected stock prices are skewed to the right.
(D) Stock returns are not correlated over time.
(E) (A)–(D) are all weaknesses.
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15. You are given the following graph of the profit on a position with derivatives:

20 30 40 50 60 70
Stock Price

−20

−10

0

10

20

Pr
ofi

t

Determine which of the following positions has this profit graph.
(A) Long forward
(B) Short forward
(C) Long collar
(D) Long collared stock
(E) Short collar

16. For a put option on a stock:

(i) The premium is 2.56.
(ii) Delta is −0.62.
(iii) Gamma is 0.09.
(iv) Theta is −0.02 per day.

Calculate the delta-gamma-theta approximation for the put premium after 3 days if the stock price
goes up by 2.

(A) 1.20 (B) 1.32 (C) 1.44 (D) 1.56 (E) 1.62

17. St is the price of a stock at time t, with t expressed in years. You are given:

(i) St/S0 is lognormally distributed.
(ii) The continuously compounded expected annual return on the stock is 5%.
(iii) The annual σ for the stock is 30%.
(iv) The stock pays no dividends.

Determine the probability that the stock will have a positive return over a period of three years.

(A) 0.49 (B) 0.51 (C) 0.54 (D) 0.59 (E) 0.61

MFE Study Manual—10th edition 2nd printing
Copyright ©2017 ASM

Exam questions continue on the next page . . .



488 PRACTICE EXAMS

18. The following diagram is a graph of profit from an option strategy.

20 30 40 50 60 70
Stock Price
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Determine which option strategy produces this profit graph.
(A) Long butterfly spread
(B) Short butterfly spread
(C) Ratio spread
(D) Long strangle
(E) Short strangle

19. For an at-the-money European call option on a nondividend paying stock:

(i) The price of the stock follows the Black-Scholes framework
(ii) The option expires at time t.
(iii) The option’s delta is 0.5832.

Calculate delta for an at-the-money European call option on the stock expiring at time 2t.

(A) 0.62 (B) 0.66 (C) 0.70 (D) 0.74 (E) 0.82

20. An insurance company offers a contract that pays a floating interest rate at the end of each year for
2 years. The floating rate is the 1-year-bond interest rate prevailing at the beginning of each of the two
years. A rider provides that a minimum of 3% effective will be paid in each year.

You are given that the current interest rate is 5% effective for 1-year bonds and 5.5% effective for 2-year
zero-coupon bonds. The volatility of a 1-year forward on a 1-year bond is 0.12.

Using the Black formula, calculate the value of the rider for an investment of 1000.

(A) 31 (B) 32 (C) 33 (D) 58 (E) 60

21. Gap options on a stock have six months to expiry, strike price 50, and trigger 49. You are given:

(i) The stock price is 45.
(ii) The continuously compounded risk free rate is 0.08.
(iii) The continuously compounded dividend rate of the stock is 0.02.

The premium for a gap call option is 1.68.
Determine the premium for a gap put option.

(A) 4.20 (B) 5.17 (C) 6.02 (D) 6.96 (E) 7.95
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22. Determine which of the following positions has the same cash flow as a short zero-coupon bond
position.
(A) Long stock and long forward
(B) Long stock and short forward
(C) Short stock and long forward
(D) Short stock and short forward
(E) Long forward and short forward

23. A 1-year American pound-denominated put option on euros allows the sale of e100 for £90. It is
modeled with a 2-period binomial tree based on forward prices. You are given

(i) The spot exchange rate is £0.8/e.
(ii) The continuously compounded risk-free rate in pounds is 0.06.
(iii) The continuously compounded risk-free rate in euros is 0.04.
(iv) The volatility of the exchange rate of pounds to euros is 0.1.

Calculate the price of the put option.

(A) 8.92 (B) 9.36 (C) 9.42 (D) 9.70 (E) 10.00

24. For a 1-year call option on a nondividend paying stock:

(i) The price of the stock follows the Black-Scholes framework.
(ii) The current stock price is 40.
(iii) The strike price is 45.
(iv) The continuously compounded risk-free interest rate is 0.05.

It has been observed that if the stock price increases 0.50, the price of the option increases 0.25.
Determine the implied volatility of the stock.

(A) 0.32 (B) 0.37 (C) 0.44 (D) 0.50 (E) 0.58

25. The price of an asset, X(t), follows the Black-Scholes framework. You are given that

(i) The continuously compounded expected rate of appreciation is 0.1.
(ii) The volatility is 0.2.

Determine Pr
(
X(2)3 > X(0)3) .

(A) 0.63 (B) 0.65 (C) 0.67 (D) 0.69 (E) 0.71
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26. A market-maker writes a 1-year call option and delta-hedges it. You are given:

(i) The stock’s current price is 100.
(ii) The stock pays no dividends.
(iii) The call option’s price is 4.00.
(iv) The call delta is 0.76.
(v) The call gamma is 0.08.
(vi) The call theta is −0.02 per day.
(vii) The continuously compounded risk-free interest rate is 0.05.

The stock’s price rises to 101 after 1 day.
Estimate the market-maker’s profit.

(A) −0.04 (B) −0.03 (C) −0.02 (D) −0.01 (E) 0

27. You are simulating one value of a lognormal random variable with parameters µ � 1, σ � 0.4 by
drawing 12 uniform numbers on [0, 1]. The sum of the uniform numbers is 5.

Determine the generated lognormal random number.

(A) 1.7 (B) 1.8 (C) 1.9 (D) 2.0 (E) 2.1

28. Consider European put and call options on ABC Stock with expiration date 3 months from today.
You are given

(i) The implied volatility of a put option whose delta is −0.25 is 0.16.
(ii) The implied volatility of a call option whose delta is 0.25 is 0.20.

Calculate the risk reversal.

(A) −0.20 (B) −0.04 (C) 0.04 (D) 0.18 (E) 0.25

29. You are given:

(i) The price of a stock is 40.
(ii) The continuous dividend rate for the stock is 0.02.
(iii) Stock volatility is 0.3.
(iv) The continuously compounded risk-free interest rate is 0.06.

A 3-month at-the-money European call option on the stock is priced with a 1-period binomial tree.
The tree is constructed so that the risk-neutral probability of an up move is 0.5 and the ratio between the
prices on the higher and lower nodes is e2σ

√
h , where h is the amount of time between nodes in the tree.

Determine the resulting price of the option.

(A) 3.11 (B) 3.16 (C) 3.19 (D) 3.21 (E) 3.28
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30. For a portfolio of call options on a stock:

Number of Call premium
shares of stock per share Delta

100 11.4719 0.6262
100 11.5016 0.6517
200 10.1147 0.9852

Calculate delta for the portfolio.

(A) 0.745 (B) 0.812 (C) 0.934 (D) 297.9 (E) 324.8

Solutions to the above questions begin on page 597.
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Appendix A. Solutions for the Practice Exams

Answer Key for Practice Exam 1

1 E 11 D 21 B
2 A 12 E 22 C
3 E 13 D 23 E
4 B 14 C 24 B
5 A 15 C 25 E
6 D 16 C 26 B
7 C 17 B 27 B
8 D 18 B 28 C
9 E 19 A 29 B
10 B 20 C 30 E

Practice Exam 1

1. [Lesson 1] Notional value is the value of the underlying asset. Here that is 100(40) � 4000 for each
option, or 4000(3000) � 12,000,000 for all options. (E)

2. [Section 7.4] Options are convex, meaning that as the strike price increases, the rate of increase
in the put premium does not decrease. The rate of increase from 30 to 35 is (6.40 − 2.40)/(35 − 30) � 0.80,
so the rate of increase from 35 to 38 must be at least (38 − 35)(0.80) � 2.40, making the price at least
6.40 + 2.40 � 8.80. Thus (A) is correct.

3. [Subsection 6.1] By put-call parity,

P � C + Ke−rt − Se−δt

� 4.10 + 28e−0.025 − 30 � 1.4087

For 100 shares, the cost is 100(1.4087) � 140.87 . (E)

4. [Section 18.1] The monthly arithmetic average of the prices is

39 + 37 + 43
3 � 39.6667

The monthly geometric average of the prices is

3
√
(39)(37)(43) � 39.5893

The payments on the options are:
• The arithmetic average price call options with strike 36 pay 39.6667 − 36 � 3.6667.
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0.852314

0.836106

0.923301

0.904837

0.941765

0.980199

Year 0 Year 1 Year 2

Figure A.1: Zero-coupon bond prices in the solution for question 6

• The geometric average strike call options pay 43 − 39.5893 � 3.4107.
• The arithmetic average price put options with strike 41 pay 41 − 39.6667 � 1.3333.

The total payment on the options is 100(3.6667) + 200(3.4107) + 300(1.3333) � 1448.8 . (B)

5. [Section 14.3] By Black’s formula,

d1 �
ln(260/256) + 0.5(0.252)(0.5)

0.25
√

0.5
� 0.17609

d2 � 0.17609 − 0.25
√

0.5 � −0.00068
N(d1) � N(0.17609) � 0.56989
N(d2) � N(−0.00068) � 0.49973

C � 260e−0.02(0.56989) − 256e−0.02(0.49973) � 19.84 (A)

6. [Section 22.1] The prices of bonds at year 2 are e−0.1 � 0.904837, e−0.06 � 0.941765, and e−0.02 �

0.980199 at the 3 nodes. Pulling back, the price of a 2-year bond at the upper node of year 1 is

0.5e−0.08(0.904837 + 0.941765) � 0.852314

and the price of a 2-year bond at the lower node of year 1 is

0.5e−0.04(0.941765 + 0.980199) � 0.923301

The price of a 3-year bond initially is

0.5e−0.06(0.852314 + 0.923301) � 0.836106

The yield is −(ln 0.836106)/3 � 0.059667 . (D) The binomial tree of bond prices is shown in Figure A.1.

7. [Section 4.1] Let S be the value of the stock at the end of one year. Profit for Investor A is
S − 40 − 5.5e0.02 � 6.44. Therefore S � 52.05.

Let C be the call price for Investor B. For Investor B, profit was 52.05 − 45 − Ce0.02 � 3.22. Therefore,
C � 3.75 . (C)

8. [Section 17.3] By the Boyle-Emanuel formula, with period 1
24 of a year, the variance of annual

returns is
Var(R1/24,1) � 1

2
((402)(0.202)(0.02))2/24 � 0.0341 (D)
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9. [Lesson 14] For one share, Black-Scholes formula gives:

d1 �
ln(42/40) + (

0.05 − 0 + 0.5(0.222))(0.5)
0.22
√

0.5
� 0.55212

d2 � 0.55212 − 0.22
√

0.5 � 0.39656
N(−d2) � N(−0.39656) � 0.34585
N(−d1) � N(−0.55212) � 0.29043

P � 40e−0.05(0.5)(0.34585) − 42(0.29043) � 1.2944

The cost of 100 puts is 100(1.2944) � 129.44 . (E)
Note that this question has nothing to do with delta hedging. The purchaser is merely interested in

guaranteeing that he receives at least 40 for each share, and does not wish to give up upside potential. A
delta hedger gives up upside potential in return for keeping loss close to zero.

10. [Lesson 8] Cd � 0 and Cu � 1.3(66) − 70 � 15.8. By equation (8.2),

B � e−rt
(
uCd − dCu

u − d

)
� e−0.15

(−0.7(15.8)
0.6

)
� −15.87

15.87 is borrowed. (B)

11. [Lesson 13] First calculate the logarithms of ratios of consecutive prices

t St ln(St/St−1)
0 50.02
1 51.11 0.02156
2 50.09 −0.02016
3 48.25 −0.03743
4 52.06 0.07600
5 54.18 0.03991

Then calculate the sample standard deviation.

0.02156 − 0.02016 − 0.03743 + 0.07600 + 0.03991
5 � 0.01598

0.021562 + 0.020162 + 0.037432 + 0.076002 + 0.039912

5 � 0.001928
5
4 (0.001928 − 0.015982) � 0.002091√

0.002091 � 0.04573

Then annualize by multiplying by
√

52

0.04573
√

52 � 0.3298 (D)

12. [Subsection 6.1] By put-call parity

12.63 − 9.91 � 90e−0.04t − 85e−0.02t
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90e−0.04t − 85e−0.02t − 2.72 � 0

Let x � e−0.02t and solve the quadratic for x.

x �
85 +

√
852 + 4(90)(2.72)

2(90) �
175.577

180 � 0.975428

The other solution to the quadratic leads to x < 0, which is impossible for x � e−0.02t . Now we solve for t.

e−0.02t
� 0.975428

0.02t � − ln 0.975428 � 0.024879

t � 50(0.024879) � 1.244 (E)

13. [Section 5.3] This is a box spread. At expiry, the 48-strike call and put will require payment of
48, and the 60-strike call and put will result in receiving 60, so the portfolio will pay 60 − 48 � 12. The
present value of 12 is 12e−0.05 � 11.41 . (D)

14. [Subsection 11.2.1] (C) is not a weakness, since one would expect that the multiplicative change
in stock price, rather than the additive change, is symmetric.

15. [Section 5.3] A long collar has this graph. (C) A short forward wouldn’t have the flat section.
Long forwards and short collars increase in value with increasing stock prices. A collared stock has flat
lines on the left and right.

16. [Section 17.2] Theta is expressed per day of decrease, so we just have to multiply it as given by 3.
Thus the change in price is

∆ε + 0.5Γε2
+ θh � −0.62(2) + 0.5(0.09)(22) − 0.02(3) � −1.12

The new price is 2.56 − 1.12 � 1.44 . (C)

17. [Section 12.2] We are given that the average return α � 0.05, so the parameter of the associated
normal distribution is µ � 0.05 − 0.5(0.32) � 0.005. For a three year period, m � µt � 0.015 and
v � σ

√
t � 0.3

√
3 � 0.5196. For a positive return, we need the normal variable with these parameters to

be greater than 0. The probability that anN(0.015, 0.51962) variable is greater than 0 is N(0.015/0.5196) �
N(0.02887) � 0.51151 . (B)

18. [Section 5.4] A short butterfly spread produces this graph. (B) The spread is asymmetric with
strike prices 30, 45, 50. A long butterfly spread would have this graph upside-down. A ratio spread
would not have a flat line on both sides; neither would a strangle.

19. [Section 15.1] Delta is e−δt N(d1), or N(d1) for a nondividend paying stock. Since the option is
at-the-money,

d1 �
(r + 0.5σ2)t

σ
√

t
�

r + 0.5σ2

σ

√
t

So doubling time multiplies d1 by
√

2.

N(d1) � 0.5832
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d1 � N−1(0.5832) � 0.2101

d1
√

2 � (0.2101)(1.4142) � 0.2971

N(0.2971) � 0.6168 (A)

20. [Section 21.3] This is a floorlet in the second year. The value of a 1-year forward on a 1-year bond
with maturity value 1 is

F0,1
(
P(1, 2)) � P(0, 2)

P(0, 1) �
1.05

1.0552 � 0.943375

The strike price is 1/(1 + KR) � 1/1.03 � 0.970874, and this is 1 + KR � 1.03 calls. The Black formula gives

d1 �
ln(0.943375/0.970874) + 0.5(0.122)

0.12 � −0.17944

d2 � −0.17944 − 0.12 � −0.29944
N(d1) � N(−0.17944) � 0.42880
N(d2) � N(−0.29944) � 0.38230

C �
1

1.05
(
0.943375(0.42880) − 0.970874(0.38230)) � 0.03176

Multiplying by 1000, the answer is 1000
(
1.03(0.03176)) � 32.71 . (C)

21. [Section 19.2] For gap options, put-call parity applies with the strike price. If you buy a call and
sell a put, if ST > K2 (the trigger price) you collect St and pay K1, and if St < K2 you pay K1 and collect St
which is the same as collecting St and paying K1, so

C − P � Se−δt − K1e−rt

In this problem,

P � C + K1e−rt − Se−δt
� 1.68 + 50e−0.04 − 45e−0.01

� 5.167 (B)

22. [Section 2.4] A synthetic forward is a long stock plus a short bond. So a short bond is a long
forward plus a short stock. (C)

23. [Section 9.3] The 6-month forward rate of euros in pounds is e(0.06−0.04)(0.5) � e0.01 � 1.01005. Up
and down movements, and the risk-neutral probability of an up movement, are

u � e0.01+0.1
√

0.5
� 1.08406

d � e0.01−0.1
√

0.5
� 0.94110

p∗ �
1.01005 − 0.94110
1.08406 − 0.94110 � 0.4823

1 − p∗ � 1 − 0.4823 � 0.5177

The binomial tree is shown in Figure A.2. At the upper node of the second column, the put value is
calculated as

Pu � e−0.03(0.5177)(0.08384) � 0.04212
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0.86725
0.04212

0.8
0.1

0.75288
0.14712

0.94014
0

0.81616
0.08384

0.70853
0.19147

Figure A.2: Exchange rates and option values for put option of question 23

At the lower node of the second column, the put value is calculated as

Ptentative
d � e−0.03 ((0.4823)(0.08384) + (0.5177)(0.19147)) � 0.13543

but the exercise value 0.9 − 0.75288 � 0.14712 is higher so it is optimal to exercise. At the initial node, the
calculated value of the option is

Ptentative
� e−0.03 ((0.4823)(0.04212) + (0.5177)(0.14712)) � 0.09363

Since 0.9 − 0.8 � 0.1 > 0.09363, it is optimal to exercise the option immediately, so its value is 0.10 (which
means that such an option would never exist), and the price of an option for e100 is 100(0.10) � 10 . (E)

24. [Section 16.2] ∆ is observed to be 0.25/0.50 � 0.5. In Black-Scholes formula,∆ � e−δt N(d1) � N(d1)
in our case. Since N(d1) � 0.5, d1 � 0. Then

ln(S/K) + r + 0.5σ2

σ
� 0

ln(40/45) + 0.05 + 0.5σ2
� 0

0.5σ2
� − ln(40/45) − 0.05 � 0.11778 − 0.05 � 0.06778

σ2
�

0.06778
0.5 � 0.13556

σ �
√

0.13556 � 0.3682 (B)

25. [Section 12.2] The fraction X(2)/X(0) follows a lognormal distribution with parameters m �

2
(
0.1 − 0.5(0.22)) � 0.16 and v � 0.2

√
2. Cubing does not affect inequalities, so the requested probability

is the same as Pr
(
ln X(2) − ln X(0) > 0

)
, which is

1 − N
(−0.16
0.2
√

2

)
� N(0.56569) � 0.7142 (E)
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26. [Section 17.2] By formula (17.3) with ε � 1 and h � 1/365,

Market-Maker Profit � −0.5Γε2 − θh − rh
(
S∆ − C(S))

� −0.5(0.08)(12) + 0.02 − 0.05
365 [(100)(0.76) − 4]

� −0.04 + 0.02 − 0.00986 � −0.02986 (B)

27. [Section 20.2] The sum of the uniform numbers has mean 6, variance 1, so we subtract 6 to
standardize it.

5 − 6 � −1

We then multiply by σ and add µ to obtain aN(µ, σ2) random variable.

(−1)(0.4) + 1 � 0.6

Then we exponentiate.
e0.6

� 1.822 (B)

28. [Section 16.2] Risk reversal is the volatility of a call minus the volatility of a put. Here that is
0.20 − 0.16 � 0.04 . (C)

29. [Lesson 8] The risk-neutral probability is

0.5 � p∗ �
e(r−δ)h − d

u − d
�

e(0.06−0.02)(0.25) − d
u − d

�
e0.01 − d

u − d

but u � de2σ
√

h � de2(0.3)(1/2) � de0.3, so

e0.01 − d � 0.5
(
e0.3d − d

)
e0.01

� d
(
0.5(e0.3 − 1) + 1

)
� 1.17493d

d �
e0.01

1.17493 � 0.85967

u � 0.85967e0.3
� 1.16043

The option only pays at the upper node. The price of the option is

C � e−rh p∗(Su − K) � e−0.06(0.25)(0.5)(40(1.16043) − 40
)
� 3.1609 (B)

30. [Subsection 15.1.7] Delta for a portfolio of options on a single stock is the sum of the individual
deltas of the options.

100(0.6262) + 100(0.6517) + 200(0.9852) � 324.8 (E)
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